Listas de Exercícios: ITA

Cálculo equação de uma reta baseado na área de um quadrilátero

1 avaliação

Se a reta de equação divide o quadrilátero cujos vértices são , , e em duas regiões de mesma área, então o valor de é igual a:
a) .
b) .
c) .
d) .
e) .

Cálculo da área de um triângulo construído a partir de uma circunferência

1 avaliação

Sejam uma circunferência de raio e uma corda em de comprimento . As tangentes a em e em interceptam-se no ponto exterior a . Então, a área do triângulo , em , é igual a:
a) .
b) .
c) .
d) .
e) .

Verificação de propriedades de números complexos

1 avaliação

Considere as afirmações a seguir:
I) Se e são números complexos tais que e , então .
II) A soma de todos os números complexos que satisfazem é igual a zero.
III) Se , então .
É (são) verdadeira(s):
a) apenas I.
b) apenas I e II.
c) apenas I e III.
d) apenas II e III.
e) I, II e III.

Cálculo de uma expressão de matrizes

1 avaliação

Se e , então é igual a:
a) .
b) .
c) .
d) .
e) .

Cálculo do seno da diferença entre os dois ângulos de um triângulo

1 avaliação

Um triângulo retângulo tem perímetro igual a em que é o comprimento da hipotenusa. Se e são seus ângulos agudos, com , então é igual a:
a) .
b) .
c) .
d) .
e) .

Cálculo de matrizes que satisfazem a algumas equações

1 avaliação

Seja a matriz de ordem , dada pela equação a seguir.

a) Determine todas as matrizes tais que .
b) Existe uma matriz com que satisfaça ?
Se sim, dê um exemplo de uma dessas matrizes.

Cálculo da probabilidade de um menino voltar à sua posição inicial no sexto passo

2 avaliações

Numa certa brincadeira, um menino dispõe de uma caixa contendo quatro bolas, cada qual marcada com apenas uma destas letras: , , e . Ao retirar aleatoriamente uma bola, ele vê a letra correspondente e devolve a bola à caixa. Se essa letra for , ele dá um passo na direção Norte; se , em direção Sul, se , na direção Leste e se , na direção Oeste.
Qual a probabilidade de ele voltar para a posição inicial no sexto passo?

Cálculo do cosseno de um ângulo formado pelo centro de uma circunferência e dois pontos pertencentes a ela

1 avaliação

Se e são pontos que pertencem à circunferência e à reta então o valor do cosseno do ângulo é igual a:
a) .
b) .
c) .
d) .
e) .

Cálculo das coordenadas de um ponto que pertence a duas circunferências

1 avaliação

Considere as circunferências

e

O triângulo satisfaz as seguintes propriedades:
i) o lado coincide com a corda comum a e ;
ii) o vértice pertence ao primeiro quadrante;
iii) o vértice pertence a e a reta que contém é tangente a .
Determine as coordenadas do vértice .

Cálculo de raízes de uma equação polinomial

1 avaliação

Sejam , , números reais com .
a) Mostre que a mudança transforma a equação a seguir
numa equação de segundo grau.
b) Determine todas as raízes da equação .

próximos 10